## Exercise 31

(a) Use the Quotient Rule to differentiate the function

$$
f(x)=\frac{\tan x-1}{\sec x}
$$

(b) Simplify the expression for $f(x)$ by writing it in terms of $\sin x$ and $\cos x$, and then find $f^{\prime}(x)$.
(c) Show that your answers to parts (a) and (b) are equivalent.

## Solution

Use the quotient rule to differentiate $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}[f(x)] \\
& =\frac{d}{d x}\left(\frac{\tan x-1}{\sec x}\right) \\
& =\frac{\left[\frac{d}{d x}(\tan x-1)\right] \sec x-\left[\frac{d}{d x}(\sec x)\right](\tan x-1)}{(\sec x)^{2}} \\
& =\frac{\left(\sec ^{2} x\right) \sec x-(\sec x \tan x)(\tan x-1)}{\sec ^{2} x} \\
& =\frac{\sec ^{3} x-\sec x \tan ^{2} x+\sec x \tan x}{\sec ^{2} x} \\
& =\frac{\sec ^{2} x-\tan ^{2} x+\tan x}{\sec x} \\
& =\frac{\left(\tan ^{2} x+1\right)-\tan ^{2} x+\tan x}{\sec x} \\
& =\frac{1+\tan x}{\sec x} \\
& =\frac{1+\frac{\sin x}{\cos x}}{\frac{1}{\cos x}} \cdot \frac{\cos x}{\cos x} \\
& =\cos x+\sin x
\end{aligned}
$$

Write $f(x)$ in terms of sine and cosine

$$
f(x)=\frac{\tan x-1}{\sec x}=\frac{\frac{\sin x}{\cos x}-1}{\frac{1}{\cos x}} \cdot \frac{\cos x}{\cos x}=\sin x-\cos x
$$

and then differentiate it.
$f^{\prime}(x)=\frac{d}{d x}[f(x)]=\frac{d}{d x}(\sin x-\cos x)=\frac{d}{d x}(\sin x)-\frac{d}{d x}(\cos x)=(\cos x)-(-\sin x)=\cos x+\sin x$

